Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Viruses ; 14(7)2022 06 30.
Article in English | MEDLINE | ID: covidwho-1917793

ABSTRACT

Despite the fast development of vaccines, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still circulating and generating variants of concern (VoC) that escape the humoral immune response. In this context, the search for anti-SARS-CoV-2 compounds is still essential. A class of natural polyphenols known as flavonoids, frequently available in fruits and vegetables, is widely explored in the treatment of different diseases and used as a scaffold for the design of novel drugs. Therefore, herein we evaluate seven flavonoids divided into three subclasses, isoflavone (genistein), flavone (apigenin and luteolin) and flavonol (fisetin, kaempferol, myricetin, and quercetin), for COVID-19 treatment using cell-based assays and in silico calculations validated with experimental enzymatic data. The flavonols were better SARS-CoV-2 inhibitors than isoflavone and flavones. The increasing number of hydroxyl groups in ring B of the flavonols kaempferol, quercetin, and myricetin decreased the 50% effective concentration (EC50) value due to their impact on the orientation of the compounds inside the target. Myricetin and fisetin appear to be preferred candidates; they are both anti-inflammatory (decreasing TNF-α levels) and inhibit SARS-CoV-2 mainly by targeting the processability of the main protease (Mpro) in a non-competitive manner, with a potency comparable to the repurposed drug atazanavir. However, fisetin and myricetin might also be considered hits that are amenable to synthetic modification to improve their anti-SARS-CoV-2 profile by inhibiting not only Mpro, but also the 3'-5' exonuclease (ExoN).


Subject(s)
COVID-19 Drug Treatment , Flavones , Isoflavones , Flavones/pharmacology , Flavonoids/pharmacology , Flavonols/pharmacology , Humans , Isoflavones/pharmacology , Kaempferols , Molecular Docking Simulation , Protease Inhibitors , Quercetin/pharmacology , SARS-CoV-2
2.
Molecules ; 26(21)2021 Oct 29.
Article in English | MEDLINE | ID: covidwho-1488677

ABSTRACT

Flavonoids are important secondary plant metabolites that have been studied for a long time for their therapeutic potential in inflammatory diseases because of their cytokine-modulatory effects. Five flavonoid aglycones were isolated and identified from the hydrolyzed aqueous methanol extracts of Anastatica hierochuntica L., Citrus reticulata Blanco, and Kickxia aegyptiaca (L.) Nabelek. They were identified as taxifolin (1), pectolinarigenin (2), tangeretin (3), gardenin B (4), and hispidulin (5). These structures were elucidated based on chromatographic and spectral analysis. In this study, molecular docking studies were carried out for the isolated and identified compounds against SARS-CoV-2 main protease (Mpro) compared to the co-crystallized inhibitor of SARS-CoV-2 Mpro (α-ketoamide inhibitor (KI), IC50 = 66.72 µg/mL) as a reference standard. Moreover, in vitro screening against SARS-CoV-2 was evaluated. Compounds 2 and 3 showed the highest virus inhibition with IC50 12.4 and 2.5 µg/mL, respectively. Our findings recommend further advanced in vitro and in vivo studies of the examined isolated flavonoids, especially pectolinarigenin (2), tangeretin (3), and gardenin B (4), either alone or in combination with each other to identify a promising lead to target SARS-CoV-2 effectively. This is the first report of the activity of these compounds against SARS-CoV-2.


Subject(s)
Coronavirus 3C Proteases/drug effects , Flavones/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/pharmacology , Brassicaceae/metabolism , Chlorocebus aethiops , Chromones/pharmacology , Coronavirus 3C Proteases/metabolism , Drug Discovery/methods , Flavones/metabolism , Flavonoids/pharmacology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Plant Extracts/pharmacology , Protease Inhibitors/chemistry , Quercetin/analogs & derivatives , Quercetin/pharmacology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Vero Cells , COVID-19 Drug Treatment
3.
Med Chem ; 18(3): 382-393, 2022.
Article in English | MEDLINE | ID: covidwho-1348419

ABSTRACT

BACKGROUND: During the current SARS-CoV-2 pandemic, the identification of effective antiviral drugs is crucial. Unfortunately, no specific treatment or vaccine is available to date. OBJECTIVE: Here, we aimed to predict the interactions with SARS-CoV-2 proteins and protein targets from the human body for some flavone molecules (kaempferol, morin, pectolinarin, myricitrin, and herbacetin) in comparison to synthetic compounds (hydroxychloroquine, remdesivir, ribavirin, ritonavir, AMD-070, favipiravir). METHODS: Using MOE software and advanced bioinformatics and cheminformatics portals, we conducted an extensive analysis based on various structural and functional features of compounds, such as their amphiphilic field, flexibility, and steric features. The structural similarity analysis of natural and synthetic compounds was performed using Tanimoto coefficients. The interactions of some compounds with SARS-CoV-2 3CLprotease or RNA-dependent RNA polymerase were described using 2D protein-ligand interaction diagrams based on known crystal structures. The potential targets of considered compounds were identified using the SwissTargetPrediction web tool. RESULTS: Our results showed that remdesivir, pectolinarin, and ritonavir present a strong structural similarity which may be correlated to their similar biological activity. As common molecular targets of compounds in the human body, ritonavir, kaempferol, morin, and herbacetin can activate multidrug resistance-associated proteins, while remdesivir, ribavirin, and pectolinarin appear as ligands for adenosine receptors. CONCLUSION: Our evaluation recommends remdesivir, pectolinarin, and ritonavir as promising anti- SARS-CoV-2 agents.


Subject(s)
COVID-19 Drug Treatment , Flavones , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Antiviral Agents/chemistry , Computational Biology , Flavones/pharmacology , Humans , SARS-CoV-2
4.
Molecules ; 26(13)2021 Jun 27.
Article in English | MEDLINE | ID: covidwho-1287269

ABSTRACT

We measured and studied the growth parameters and the qualitative and quantitative composition of the flavones of hairy roots of the Scutellaria genus: S. lateriflora, S. przewalskii and S. pycnoclada. Hairy roots were obtained using wild-type Agrobacterium rhizogenes A4 by co-cultivation of explants (cotyledons) in a suspension of Agrobacterium. The presence of the rol-genes was confirmed by PCR analysis. The hairy roots of the most studied plant from the Scutellaria genus, S. baicalensis, were obtained earlier and used as a reference sample. HPLC-MS showed the predominance of four main flavones (baicalin, baicalein, wogonin and wogonoside) in the methanol extracts of the studied hairy roots. In addition to the four main flavones, the other substances which are typical to the aerial part of plants were found in all the extracts: apigenin, apigetrin, scutellarin and chrysin-7-O-ß-d-glucuronide. According to the total content of flavones, the hairy roots of the studied skullcaps form the following series: S. przewalskii (33 mg/g dry weight) > S. baicalensis (17.04 mg/g dry weight) > S. pycnoclada (12.9 mg/g dry weight) > S. lateriflora (4.57 mg/g dry weight). Therefore, the most promising producer of anti-coronavirus flavones is S. przewalskii.


Subject(s)
Antiviral Agents/chemistry , Flavones/chemistry , Scutellaria/chemistry , Agrobacterium/growth & development , Agrobacterium/metabolism , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Chromatography, High Pressure Liquid , Flavones/isolation & purification , Flavones/pharmacology , Plant Cells/metabolism , Plant Extracts/chemistry , Plant Roots/chemistry , Plant Roots/metabolism , Scutellaria/growth & development , Scutellaria/metabolism , Tandem Mass Spectrometry
5.
Fitoterapia ; 152: 104909, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1203052

ABSTRACT

3-Chymotrypsin-like protease (3CLpro) is a virally encoded main proteinase that is pivotal for the viral replication across a broad spectrum of coronaviruses. This study aims to discover the naturally occurring SARS-CoV-2 3CLpro inhibitors from herbal constituents, as well as to investigate the inhibitory mechanism of the newly identified efficacious SARS-CoV-2 3CLpro inhibitors. Following screening of the inhibitory potentials of eighty herbal products against SARS-CoV-2 3CLpro, Ginkgo biloba leaves extract (GBLE) was found with the most potent SARS-CoV-2 3CLpro inhibition activity (IC50 = 6.68 µg/mL). Inhibition assays demonstrated that the ginkgolic acids (GAs) and the bioflavones isolated from GBLE displayed relatively strong SARS-CoV-2 3CLpro inhibition activities (IC50 < 10 µM). Among all tested constituents, GA C15:0, GA C17:1 and sciadopitysin displayed potent 3CLpro inhibition activities, with IC50 values of less than 2 µM. Further inhibition kinetic studies and docking simulations clearly demonstrated that two GAs and sciadopitysin strongly inhibit SARS-CoV-2 3CLprovia a reversible and mixed inhibition manner. Collectively, this study found that both GBLE and the major constituents in this herbal product exhibit strong SARS-CoV-2 3CLpro inhibition activities, which offer several promising leading compounds for developing novel anti-COVID-19 medications via targeting on 3CLpro.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus Protease Inhibitors/pharmacology , Ginkgo biloba/chemistry , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Antiviral Agents/therapeutic use , Biflavonoids/pharmacology , Biflavonoids/therapeutic use , Coronavirus Protease Inhibitors/therapeutic use , Flavones/pharmacology , Flavones/therapeutic use , Humans , Molecular Structure , Phytotherapy , Plant Extracts/therapeutic use , Plant Leaves/chemistry , SARS-CoV-2/enzymology , Salicylates/pharmacology , Salicylates/therapeutic use
6.
J Mol Graph Model ; 105: 107904, 2021 06.
Article in English | MEDLINE | ID: covidwho-1142056

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a new pandemic characterized by quick spreading and illness of the respiratory system. To date, there is no specific therapy for Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). Flavonoids, especially rutin, have attracted considerable interest as a prospective SARS-CoV-2 main protease (Mpro) inhibitor. In this study, a database containing 2017 flavone analogs was prepared and screened against SARS-CoV-2 Mpro using the molecular docking technique. According to the results, 371 flavone analogs exhibited good potency towards Mpro with docking scores less than -9.0 kcal/mol. Molecular dynamics (MD) simulations, followed by molecular mechanics-generalized Born surface area (MM/GBSA) binding energy calculations, were performed for the top potent analogs in complex with Mpro. Compared to rutin, PubChem-129-716-607 and PubChem-885-071-27 showed better binding affinities against SARS-CoV-2 Mpro over 150 ns MD course with ΔGbinding values of -69.0 and -68.1 kcal/mol, respectively. Structural and energetic analyses demonstrated high stability of the identified analogs inside the SARS-CoV-2 Mpro active site over 150 ns MD simulations. The oral bioavailabilities of probable SARS-CoV-2 Mpro inhibitors were underpinned using drug-likeness parameters. A comparison of the binding affinities demonstrated that the MM/GBSA binding energies of the identified flavone analogs were approximately three and two times less than those of lopinavir and baicalein, respectively. In conclusion, PubChem-129-716-607 and PubChem-885-071-27 are promising anti-COVID-19 drug candidates that warrant further clinical investigations.


Subject(s)
COVID-19 , Flavones , Drug Discovery , Flavones/pharmacology , Humans , Molecular Docking Simulation , Prospective Studies , Protease Inhibitors , Rutin/pharmacology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL